Baseball Prediction Using Ensemble Learning by Arlo Lyle
نویسندگان
چکیده
As the salaries of baseball players continue to skyrocket and with the ever-increasing popularity of fantasy baseball, the desire for more accurate predictions of players’ future performances is building both for baseball executives and baseball fans. While most existing work in performance prediction uses purely statistical methods, this thesis showcases research in combining multiple machine learning techniques to improve on current prediction systems by increasing the accuracy of projections in several key offensive statistical categories. By using the statistics of players from the past thirty years, the goal of this research is to more accurately learn from this data how a player’s performance changes over time and apply this knowledge to predicting future performance. Results have shown that using machine learning techniques to predict a player’s performance is comparable to the accuracy seen by some of the best prediction systems currently available. Index words: Machine Learning, Ensemble Learning, Baseball Prediction, Model Trees, Artificial Neural Networks, Support Vector Machines, Bagging, Boosting, Stacking
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملDevelopment of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability
Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set. Therefore, developing a machine for p...
متن کاملHypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملHypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کامل